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Physical interpretation of the mathematical theory 
of wave generation by wind 

By M. J. LIGHTHILL 
Royal Aircraft Establishment, Farnborough, Hants 

(Received 4 May 1962) 

In  the light of accumulated evidence in favour of Miles’s mathematical theory of 
wave generation by wind, the author has thought it desirable to translate the 
theory into the form of a physical argument, which goes as follows. Travelling 
water waves in a wind produce, to a first approximation, airflow undulations 
with pressures least over crests and greatest over troughs. Hence, just above the 
‘critical height ’ where the airflow component in the direction of propagation 
equals the wave velocity, air after slowly overtaking a crest is turned back by the 
higher pressure near the trough, moves down to a lower level and back towards 
the crest. Similarly, behind crests, an upward movement at  the critical height 
occurs. Quantitatively, the vertical velocity v is such that the ‘vortex force’ 
-pwv (where p is density and w vorticity) balances the sinusoidal pressure 
gradient. Furthermore, since in turbulent boundary layers vorticity decreases 
with height, any downflow produces a local vorticity defect, and upflow a local 
vorticity excess, and hence the vortex force varies about a negative mean a t  the 
critical height (although at other levels, where air moves sinusoidally, with 
vertical displacement and velocity 90” out of phase, the mean vortex force is 
zero). The negative total mean force extracts wind energy, and transfers it to the 
wave, enabling it to grow exponentially. For pressure gradients adequate to 
initiate substantial energy transfer, the critical height must be fairly small 
compared with the wavelength, and waves can grow whenever their velocity and 
direction satisfies this condition, a conclusion supported by measurements 
(Longuet-Higgins 1962) of the directional spectrum of wind-generated waves. 

1. Introduction 
The three elements needed for determining the mechanism of water-wave 

generation by wind, namely, a correctly argued fluid-mechanical theory, a body 
of comprehensively instrumented and recorded experiments, and a demonstra- 
tion of adequate agreement between the two, were shown in the review by Ursell 
(1956) to be all wanting, but in that by Longuet-Higgins (1962) to have been in 
large measure supplied during the intervening six years. 

The theory isdue toMiles (1957,1959u,b, 1960) andPhillips (1957,1958,1959, 
1960). We concentrate here on the mechanism of primary transfer of energy 
from wind to water, rather than on secondary transfers of energy between water- 
wave modes (Phillips 1960), interactions with water turbulence (Phillips 1959), 
or the effect of wave breaking in limiting the high-frequency spectrum to an 
inverse-fifth-power law (Phillips 1958). 
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The theory of the primary transfer is based on two models (Phillips 1957 ; Miles 
1957) which were extended and combined by Miles (1959a, b, 1960) himself, and 
further illuminated by Brooke Benjamin (1959). 

Phillips (1957) discussed the pressure fluctuations associated with turbulent 
airflow over a flat surface. He greatly overestimated their root mean square, but 
conjectured correctly, as later measurements have shown (Willmarth 1959), that 
a spatial pattern of pressure variation travels over the surface a t  a ‘pressure- 
pattern convection velocity’ Up, varying as it travels much more slowly than 
does the pressure a t  a fixed point which the pattern crosses. He showed that 
water waves with wavelength h characteristic of such a spatial pattern, and with 
associated wave velocity c (which, of course, is ,/(gh/277)), would be resonantly 
generated if their direction of propagation and that of convection of the pattern 

( 1 )  
made an angle 6 satisfying 

By contrast, the first model due to Miles (1957) was purely two-dimensional. 
He showed that an exponential build-up of water waves of velocity c could occur 
if the mean airflow velocity U in the direction of wave propagation varied with 
height y above the water surface in such a way that U”(y) was negative. The 
turbulence plays no essential part in this model, other than in creating the 
‘logarithmic’ type of mean wind velocity profile, for which this condition is 
strongly satisfied. The energy transfer to the water is then substantial provided 
that the ‘ critical ’ height y = yc, where 

up cos 6 = c .  

U(YC) = c, ( 2 )  

is small enough compared with the length h of a wave to prevent the factor 
exp ( - 477ry,./h), which appears in Miles’s expression for energy transfer, from 
being too small. 

Miles’s model neglects the squares of disturbances to the sheared airflow, 
and the dissipative or other effects on those disturbances of both viscosity and 
turbulence. It can be simply adapted (Miles 1960) to deal with the generation of 
waves at a non-zero angle 13 to the wind. On these assumptions, in fact, energy 
can be fed into a water-wave mode only by means of components of airflow 
velocity in the direction of wave propagation. Hence the velocity profile U(y) in 
Miles’s original model must be replaced by U(y) cos 6, and the definition (2) of the 

(3) 
critical height becomes 

in close analogy with Phillips’s equation (1). 
Phillips’s resonance mechanism by itself fails to explain the rate a t  which wind 

generates waves, partly because the pressure fluctuations due to turbulence in an 
airflow are altogether too weak, much weaker than Phillips (1957) estimated. 
Miles (1960) shows, however, that they can be regarded as providing the initial 
wavy disturbance of the water surface, which should then grow exponentially by 
his shear-flow mechanism of energy transfer, rather than linearly by Phillips’s 
forced-vibration mechanism. 

More recently, a very useful set of experimental data was obtained by the 
National Institute of Oceanography (Longuet-Higgins, Cartwright & Smith 
1962), using simultaneous records of vertical displacement and attitude of an 

U(ZJ,) cos 6 = C, 
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instrumented buoy to determine the coefficients of 1,008 8, sin 8, cos 28 and sin 28 
in the Fourier expansion with respect to 8 of the ‘directional spectrum’ F(a,  8) 
of the surface waves. Longuet-Higgins (1962) defines this directional spectrum so 
that pwgF(a, 8)  d a d 8  (where pw is the density of water) is the potential energy, 
per unit area of water surface, of that component of the surface deformation 
which has frequency between a and CT + da and direction of propagation between 
8 and 8 +do. From these five Fourier coefficients he infers an approximate r.m.8. 
angle between the direction of wave propagation and that of the wind, and in his 
figure 8 compares this angle @ for different values of a with ~os -~ (c /U~) ,  where U, 
is the wind velocity a t  a height of 1 wavelength (plain curve) or 0.2 wavelengths 
(lower broken line). Better agreement is obtained in the latter case, for wave- 
lengths up to lOOm (longer waves than this being probably unrelated to local 
wind conditions), as would be expected from Miles’s formula (3), according to 
which Uw should be U(y,), where exp ( - 4ny,/h) must not be too small. Further- 
more, the closeness of agreement appears to rule out any mechanism of wave 
generation, such as the ‘sheltering hypothesis’ of Jeffreys (1 925), whose effective- 
ness would increase indefinitely with the ratio (Uwcos$)/c, of wind velocity 
component in the direction of wave propagation to wave velocity. Rather, 
increase of U,/c forces the directional distribution of wave energy to an in- 
creasingly ‘ two-peaked’ form, with peaks at  angles of about cos-’(c/U,) to the 
wind direction. 

In  addition, simultaneous records of buoy elevation and air pressure showed 
that the phase difference between these remains close to 180”, as Miles’s theory 
predicts, the ratio of their amplitudes also being in agreement with the theory. 
Longuet-Higgins (1962) found that any random component in the mean square 
air pressure (that is, a ‘turbulent’ component, as opposed to one produced 
directly by heaving of the water surface into the wind) was a t  least two orders of 
magnitude smaller. 

Unfortunately, the instrumental technique was not accurate enough to show 
that the phase lag of pressure behind surface elevation was systematically a 
little less than 180”, as the theory predicts; but this cannot fail to be so if energy 
is transferred from wind to wave. To sum up, the experimental checks already 
described, coupled with the soundness of Miles’s assumptions and calculations, 
give a substantial degree of confidence that the correct explanation has at last 
been found. 

It is worth noting, no doubt, that at much higher wind velocities, as Miles 
(1959 b) shows, the part of the pressure fluctuation in perfect antiphase with the 
surface elevation could be so great as to annul the stability of the surface (given 
to it by gravity and surface tension) in relation to disturbances of small wave- 
length; this is an instability (as opposed to a wave-generation mechanism) which 
would be possible even for uniform (unsheared) airflow, as Kelvin (1871) found. 
The importance of this ‘stiffness reduction ’ mechanism (which first reduces 
frequency, i.e. wave velocity for a given wavelength, and finally gives negative 
stiffness, i.e. instability) must be greatly limited by the considerations of Phillips 
(1958) regarding effects of wave-breaking at  the small wavelengths for which it 
operates, and (more important) by the fact that Miles’s wave-generation 

25-2 
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mechanism, a 'negative damping ', normally operates much sooner; although 
Miles (1959b) used experiments by Francis (1954, 1956) to demonstrate that, in 
liquids so viscous as to provide enough counteracting positive damping, the 
surface does break up only a t  the wind velocity at which this stiffness vanishes. 

By contrast, the present paper is concerned only with that small component 
of surface air pressure fluctuation whose phase is 90" behind, and whose amplitude 
is proportional to, that of the surface elevation, so that it is able to feed energy 
into the water waves and cause them to grow exponentially. This component 
would be zero according to Kelvin's calculation for a uniform wind; Miles's 
crucial new discovery was that for a sheared wind of profile U(y) it is positive 
provided that U"(y) is negative.? 

In  one sense no further explanation is necessary: Miles's arguments are, 
mathematically, fully convincing. Many readers will agree, however, that if, 
as now appears likely, this mechanism is basically responsible for the existence of 
ocean waves, it  is desirable to translate the mathematical arguments into state- 
ments using only the basic physical ideas of fluid mechanics. Such physical 
interpretations, if accurately carried out, are often useful, for example, to suggest 
how far a conclusion may remain valid in conditions different from those assumed 
in its mathematical demonstration. A physical argument is evolved and used in 
this way in Qp2, 3 and 4, and summarized in Q 5. 

2. Properties of vorticity in two-dimensional flow 
Since spectral and directional analysis reduces the general problem to that of 

finding how a sheared airflow over water is perturbed by the heaving motions in 
a harmonic train of waves propagated in the direction of the wind, and since the 
mechanism of energy transfer from wind to wave in this ' two-dimensional flow ' 
problem will be explained by means of arguments mainly about vorticity, it is 
convenient to recall first certain properties of vorticity in two-dimensional flows. 
In  these, the velocity has only x- and y-components (u and v), which are inde- 
pendent of x, so that the vortex lines are all parallel to the x-axis and are incapable 
of stretching; accordingly, the vorticity,$ 

au av 
ay ax, =--- (4) 

is conserved for each particle of fluid-except in so far as viscosity or turbulence 
acts to diffuse it. 

The physical idea related to vorticity that will be principally used is that of 
'vortex force', an effective force on unit volume of fluid equal to density times 

t Actually, Brooke Benjamin (1959) showed that the pressure component in antiphase 
with the surface acceleration could also, through phase shifts associated with viscous action 
in the thin oscillatory-flow boundary layer near the surface, create a supplementary pressure 
component with phase 90" behind that of the surface elevation, but that this mechanism 
(like Kelvin's) would take effect much more gradually (as the wind velocity increased) than 
Miles's. 

$ Here expressed as a scalar which, strictly, is the component of vorticity in the negative 
z-direction. 
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vorticity times velocity, but directed at right angles to the velocity, so that its 
components are 

( - pwv, + pou). ( 5 )  

Prandtl (1918) showed how this expression for vortex force generalizes the law 
that lift on a wing in a wind of velocity U is pUK per unit length, where K is the 
circulation round it. 

The precise basis of ( 5 )  is an expression for ‘local rate of change ’ of momentum, 
that is, rate of change of the momentum per unit volume at a fixed point in space. 
If viscous or turbulent stresses are neglected this local rate of change is due partly 
to pressure gradient and partly to convection and can be written as the force (5) 
minus the gradient of the total pressure, 

ptot = p+&p(u2+v2), (6) 
in an equation whose x- and y-components are 

au apt,, 
at ax 9 

av aPtot 
at a Y  

p- = -pij)v-- 

p - = p o u - - - .  

17) 

Equations (7) and (8) include the statement that, in steady, irrotational flow, 
ptot has the same value everywhere. We may perhaps note, too, that steady 
rotational flow can be rendered locally irrotational by use of a frame of reference 
rotating with angular velocity &w, but only at the expense of introducing the 
Coriolis force ( -pov, pwu), exactly as in (7) and (8). 

Equation (7) will be used both in 5 3 and in 4 4. It may be objected that this 
use of a mathematical equation is inconsistent with the claim to have made an 
interpretation in terms of physical ideas ! However, the physical ideas of total 
pressure and vortex force must be admitted to play crucial roles in incompressible 
aerodynamics, both being derived from and receiving their accurate expression in 
equations (7) and (8), which indeed are nothing more than rewritten forms of the 
basic momentum equation of the fluid. With these, as with all the most valuable 
physical ideas, the mathematical apparatus underlying their evolution can (if 
they are fully absorbed) be dispensed with, but remains useful to check that they 
have been used correctly ! 

3. Physical mechanism of energy transfer from wind to wave 
We consider a sheared airflow, with velocity U(y) (in the x-direction) at a height 

y above the mean water surface. If waves on this surface travel in the x-direction 
with wave velocity c, perturbing the airflow, we wish to find the energy E trans- 
ferred from wind to wave per unit horizontal area, by air-pressure variations a t  
the surface having a component in phase with the surface rate of sinking, - 371% 
(where 7 is surface elevation). 

It is worth noting, as Stewart (1961) has pointed out, that such pressures must 
also transfer momentum from wind to wave, at a rate E/c  per unit area, This is 
clear, either because (1/c) (- aq/at) = ay/ax, or because a water wave always 
carries energy and momentum in a ratio equal to the wave velocity c (Lamb 1932, 
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pp. 370 and 419). The airflow must therefore lose energy and momentum at the 
rates E and E/c  per unit horizontal area, respectively; hence, since any losses of 
energy and momentum at height y are approximately in the ratio U ( y ) ,  the level 
y = yc, where 

must be a kind of average level for loss of air energy and momentum. 
Actually, both are lost almost entirely in a thin layer, centred on this level 

y = yc. To prove this, we begin from the equation (7) for rate of change of air 
momentum, which simplifies when averaged over a wavelength to 

(9) U(YJ = c, 

d u  - 
p- = -pwv,  

at 

where the bars signify the average over a wavelength; the average of apt,tlax is 
zero, because the values of ptot, like other quantities in the airflow, are periodic, 
repeating themselves every wavelength. 

Now, the vorticity w takes the value U’(y) in the unperturbed shear flow, a 
value decreasing with height if, as Miles assumes, U”(y)  < 0. In  the undulations 
of the airflow, caused by the heaving motions of the water, variations of w from 
this unperturbed value U’( y )  are due mainly to displacements of level, since, as 
noted in tj 2, w is conserved for a fluid element except in so far as it is diffused by 
viscous or turbulent action; if these are neglected, the vorticity at  (x, y ) ,  where the 
fluid has suffered a vertical displacement h from its unperturbed leve1,t is 

w = U’(y - h) + U’(y) - hU”(y).  (11) 

Substituting this expression for w in equation (lo), we note that the first term, 
U’(y), makes a zero contribution to the right-hand side of (lo), since the mean of 
the vertical velocity w at any level must be zero by conservation of mass. Hence, 
the mean rate of change of momentum is 

au 
at 

p- = p U ” ( y ) h v ,  

an equation previously derived by Taylor (1915). 
Now, the airflow pattern must travel along with the same wave velocity, c, as 

the pattern of surface heaving which produces it. Hence, air at levels y other than 
yc (that is, air with unperturbed velocity U ( y )  =# c )  suffers approximately sinu- 
soidal displacements, with frequency 

u(y) -c  (where h = wavelength); 
h 

in such sinusoidal motions, the right-hand side of (12) would be zero, since the 
vertical displacement h and the vertical velocity v would be 90” out of phase. 
(Indeed, for any periodic motions, the mean product of h and h would be zero.) 

This conclusion a t  levels y $: yc is not confirmed, however, when y = yc. At this 
critical level, within the framework of small-perturbation theory, a fluid particle 

t I n  the modified theory given at the end of $3,  turbulence is taken into account 
approximately by making h the vertical displacement during the immediately preceding 
interval of duration T ,  where T is a sort of ‘randomization time’. 
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travels along a t  the same speed as the wave, so that an ascending particle can 
continue to ascend, or a descending particle to descend, and the product G i n  (12) 
increases without limit. Expressed more physically, the mean vortex force 
(product of vorticity and vertical velocity) is large at the critical level because 
rising fluid continues to rise and so to possess vorticity that is greater and greater 
relative to its surroundings, while conversely the vorticity of falling fluid becomes 
less and less relative to its surroundings. 

The last two paragraphs indicate a sort of delta-function behaviour for WV, 
infinite at the critical layer and zero elsewhere. A short calculation establishes 
the coefficient of the delta function: for a particle of fluid at height y, if v,(y) 
represents the amplitude of its vertical velocity fluctuations with frequency (13), 
we have, say, 

and (12) becomes 

where the formula 
sin zt lim = d ( x )  

t+m 

(see, for example, p. 29 of Lighthill 1958) has been used. For negative U”(yc), 
equation (15) implies that air momentum is lost at the critical layer at  a rate E / c  
per unit area, where the energy transfer rate E is given by 

in precise agreement with Miles (1957). 
However, the determination of precise coefficients was not the object of this 

analysis, which is aimed rather at showing how a vertical velocity fluctuation at  
the critical layer (with non-zero amplitude v,(yc)) generates a concentrated vortex 
force, retarding the fluid in the layer, and making it give up energy and momen- 
tum to the water waves. We shall see in 3 4 how the magnitude of v,(yc) is deter- 
mined by simple pressure-gradient considerations. In  the meantime, it is useful 
to inquire how far the physical arguments may give results that are valid 
independently of assumptions such as Miles’s neglect of the squares of perturba- 
tions or of the effects of turbulence. The answer seems to be that such non-linear 
effects broaden the layer of concentrated vortex force, without, however, 
changing its overall strength. The arguments are somewhat as follows. 

At the critical layer, the greatest value of the upflow is v,(yc) (its general value 
being this times cos {2n(z - &)/A}). Fluid with this upflow velocity passes through 
the layer, supposed of thickness 6, in a time t, = S/v,(y,). Now, the variation in 
unperturbed velocity across the layer, approximately U‘(yc) 6, must horizontally 
separate different parts of it in the available time t, by at most some fraction a of 

U’(YC) S2 - ah, 
VO(Y,) 

the wavelength, say 
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if air is to retain an upflow velocity near the maximum throughout its time in the 
layer. Also, the total vortex force on the layer, per unit area, is some fraction B of 
the excess vorticity, UN(yC) 6, due to passage through the layer, times v,(y,), times 
the thickness 6, times the density p, and hence, by (18), is 

.- ”. 
agreeing with (15) if ixp = 4. 

Turbulence seems to assist the process just described, by ensuring that fluid 
passing upwards through the layer has on the average recently acquired the 
vorticity of its surroundings (by diffusion), instead of being fluid that at an earlier 
stage had made a similar passage downwards through the layer. Admittedly, 
intense turbulent fluctuations may restrict the time spent in steady upward 
movement through the layer to an effective average time T less than t,. However, 
this would simply cause the effective critical layer to be wider, t since equation (18) 
must be replaced by TU’(y,) 6 = ah; this would balance the smaller excess vorti- 
city generated by fluid travelling, not right across the layer, but at most a distance 
v,(y,) T in the time T, and the result (19) for total vortex force would remain 
unaltered. 

4. Physical estimation of the oscillations of vertical velocity at the 
critical layer 

In  order to be able to use the formula (17) for energy transfer, Miles had to 
calculate v,(y,), the amplitude of the oscillations of vertical velocity a t  the 
critical layer, first by an approximate (Miles 1957) and then by an exact (Miles 
1959a) solution of the small-perturbation equations. A simple physical argument, 
again using vortex force, may be used to obtain Miles’s approximate value of 

This starts from a first approximation v,(y) = B,{U(y)-c)e-2“”ih (where 8, is 
maximum slope of the water surface; on this approximation v,(yc) would be zero), 
and goes on to a second approximation with v,(y,) non-zero. Brooke Benjamin 
(1959) discussed these approximations of Miles (1957) very fully, and observed 
that, together with a third approximation, they were given also in a paper on a 
totally different subject by Lighthill (1957) in the same number of the same 
journal ! 

The physical basis of the approximations appears most clearly in a frame of 
reference moving with the waves, in which the airflow may be regarded as steady,$ 

vo(Yc)* 

with unperturbed velocity 

t Exactly the same argument applies in another interesting case, when the water was 
initially at rest and has been heaving only for a limited time T (less than tc ) .  Similarly, 
Miles’s mathematical solution is of a type known to require, for its correctness, either some 
diffusive effect or a limited period of action of the forcing term. 

3 More precisely, the Miles method is to suppose in this way that a steady perturbation 
were set up, but then to show (93) that it would necessarily involve energy transfer (of 
the order of the squares of the perturbations) from wind to wave; thus his final conclusion 
is that it could not be exactly steady, although it is steady on an approximation in which 
squares of Perturbations are neglected. 
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FIGURE 1. Airflow relative to a travelling water wave. The figure depicts, in a frame of 
reference moving to the right with a travelling sinusoidal water wave of velocity c ,  a 
sheared airflow, in the direction of the wave, whose unperturbed velocity profile U ( y )  - c 
in this frame of reference is as shown, being zero at y = 0.1 wavelengths. Eight stream- 
lines are shown, representing Miles's first approximation (21), the velocity on each being 
to a first approximation given by the length of the corresponding arrow on the velocity- 
profile diagram. The figure exhibits one wavelength only, in the case when the amplitude 
of the surface elevation is 0.02 wavelengths (that is, 30 yo of the maximum possible ampli- 
tude). The next approximation to the streamline pattern would be obtained by calculating 
as in (22) the pressure distribution (low over crests, high over troughs) needed to produce 
the streamline curvatures of figure 1, and deducing an improved distribution of velocity 
and streamtube area, by means of the Bernoulli and continuity equations, respectively. 

FIGURE 2. Effect of a sinusoidal pressure gradient on a uniformly sheared airflow, in the 
absence of viscous or turbulent diffusion. Streamlines a t  equal intervals of the stream 
function are shown, on the assumption of a velocity gradient a t  the critical layer as 
in figure 1, and a pressure distribution there obtained by numerical solution (Miles 1959a) 
of the equations for a logarithmic wind profile linearly perturbed by the surface displace- 
ments of figure 1. The application of the pattern of figure 2 to figure 1 might be attempted 
by bending it so that the dash-dotted critical level takes up the shape which it has in figure 1, 
but it should be observed that the curvature of the velocity profile assumed in figure 1 
would tend to produce compression of the streamlines below the critical level and expansion 
of those above it, and moreover, that turbulent diffusion would substantially alter the 
pattern. It would not, however, alter the need for downflow ahead of the crest, and up- 
flow behind it, which results from slow fluid being turned back on approaching the higher- 
pressure regions over troughs, and must be such that the vortex force, approximately 
-pU'(y,) w, balances the sinusoidal pressure gradient. When the unperturbed vorticity 
decreases with height, this sinsuoidal variation of vertical velocity generates a negative 
mean vortex force, - p G ,  capable of extracting air momentum and energy in the correct 
ratio, c ,  for transfer to the water wave. 
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Then Miles’s first approximation states that the streamline slope 0 = w/V(y), 
whose surface value is given to be 0, cos (277x/h), satisfies everywhere 

in other words, that the streamline pattern is exactly the same (figure 1) as for 
unsheared flow. 

The argument for (21) is in two parts. First, near the water surface, or more 
specifically for small values of 2ny/h, it  gives streamlines which follow closely 
the shape of the surface streamline, so that the area of a stream-tube remains 
approximately the same throughout its length, in agreement with the hypothesis 
of extremely gradual pressure variations in this region which one derives (as in 
boundary-layer theory) from the argument that pressure variation across the 
layer must merely be sufficient to balance the centrifugal force associated with 
the small streamline curvatures. On the other hand, at higher levels, where 
variations in the unperturbed velocity are relatively small in a distance h/27r, 
departures from the streamline-slope variation (2 1) characteristic of uniform 
unperturbed velocity should be small. 

The former region, where the height is a small fraction of a wavelength, 
includes the critical level, as discussed elsewhere in this paper. Hence, since the 
streamlines there follow closely the shape of the surface, and air speed is closely 
constant along a streamline, it  is a good approximation to regard ‘critical height ’ 
as a fixed height above the actual water surface, where air speed is small in a frame 
of reference moving with the waves. Thus, the critical level is wavy, imitating the 
undulations of the water surface, as indeed Brooke Benjamin (1959) demon- 
strated by a co-ordinate transformation, and Miles ( 1 9 5 9 ~ )  attempted to by 
another, less precisely defined. 

Once equation (21) is accepted as a first approximation, the corresponding 
approximation to the pressure (whose vertical gradient must balance the centri- 
fugal force per unit volume, pV2 times the streamline curvature %/ax) can be 

At the critical layer, velocities in the present frame of reference are small, and the 
pressure and the total pressure (6) are to a close approximation identical. But 
equation (7) shows that, since the flow is steady when the squares of perturba- 
tions are neglected, the gradient of total pressure must be balanced by the vortex 
force -pov, so that to this approximation the velocity v at  the critical layer is 

in agreement with Miles (1957). 
Note that it is the balance betweenJEuctuating vortex force and fluctuations of 

total-pressure gradient, in a frame of reference in which the critical layer is 
stationary, which fixes the amplitude of upflow fluctuation in the layer; while it is 
the (second-order) mean vortex force produced by these upflow fluctuations (with 
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their capability of transporting vorticity) which causes net transfer of momentum 
from wind to wave, 

As in § 3, it  is desirable to study how far the conclusions are valid independently 
of the supposition that squares of perturbations may be neglected, particularly 
near the critical layer, which is the only place where that supposition produces 
singularities. There we have, essentially, a parallel shear flow, including a critical 
streamline on which the flow velocity is zero, and need to consider the effect upon 
it of a steady longitudinal sinusoidal pressure variation p = po sin (2nxlh).  This 
problem is easily solved, without any assumption of small perturbations, in the 
case (treated by many authors from Kelvin onwards) when the vorticity is 
initially uniform, and figure 2 shows the well-known streamlines, calculated from 
the stream function 

po sin (277x/h) cosh ( 2 n y / h )  
@ = +u’(y,)(y-y,)z+----- 

P U’(Yc) 9 

oscillations of vertical velocity are produced a t  y = yc exactly equal to those 
calculated by balancing vortex force and pressure gradient. 

The flow field when the undisturbed vorticity is not uniform, but rather 
decreases upwards, is probably not qualitatively different from that of figure 2. 
The pressure variation must similarly reduce slow-moving fluid (just above, or 
below, the critical height) to rest and cause it to move vertically before turning 
back on its tracks.? Admittedly, in the total absence of diffusion, viscous or 
turbulent, the closed streamlines shown in figure 2 would fail (as noted in Q 3) to 
produce any mean vortex force p E ;  however, any kind of diffusion makes it 
possible for fluid before entering on its region of maximum vertical movement in 
either direction to have acquired vorticity characteristic of its surroundings, and 
then pvW is positive and close to that calculated in Q 3. 

On the other hand, the logarithmic infinity in horizontal velocity, indicated 
by the small-perturbation theory, is not supported by more exact considerations, 
nor is the associated term proportional to l / ( y  - y,) in the disturbance vorticity. 
The true change in vorticity remains finite, and bounded by the product of 
- U”(y,) with the greatest vertical displacement of fluid particles, which in 
figure 2 is approximately 4(po/p)*/U’(y,).$ Thus it remains small, and only its 

t The ‘sheltering’ theory of Jeffreys (1925), which supposed that wind can undergo 
boundary-layer separation in the lee of wave crests, was largely demolished by Ursell 
(1956), who observed that momentum transfer in airflow over even solid wavy surfaces 
is experimentally an order of magnitude less than Jeffreys requires; while, for waves on 
water, propagated in the direction of the wind, the air near the surface moves forward 
more slowly than do the wave crests, so that separation on the windward side might, rather, 
be expected ! The true situation, as figure 2 indicates, is dominated not by conditions a t  
the water surface but a t  the critical layer, and also is far more symmetrical, since air 
moving forward into the lee of a crest does, at that height, suffer reversed flow, but so does 
air falling back to the windward of a crest; while the surface pressure defect ahead of 
crests is reinforced by a pressure excess behind them. It is however, possible, that for wave 
amplitudes nearer the maximum than that of figure 1 the region of reversed flow widens 
to include the water surface itself, which would increase the resemblance to conventional 
flow separation. 

$ Incidentally, half this quantity agrees well with the ‘ critical-layer thickness ’ S 
calculated by the rough argument leading to (18). 
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proportionality to the square root of the disturbance causes it to be infinite on a 
purely linear theory. Indeed, there are conditions of more extensive diffusion, 
discussed in Q 3, under which it is smaller still; these would modify substantially 
the ' cat's eye' pattern of figure 2, while retaining, however, the vertical move- 
ments required to balance the sinusoidal pressure gradient with a sinusoidal 
vortex force. 

It is natural to ask, finally, how the disturbances a t  the critical layer, which 
lead to local loss of momentum and energy, contrive to transfer these to the water 
wave. The answer is somewhat as follows. 

Undulations like those of figure 1 produce maximum streamline displacements, 
and hence also maximum vorticity perturbations, over crests and troughs. Such 
vorticity perturbations evidently induce a velocity field whose horizontal com- 
ponent has maxima over crests and troughs and whose vertical component has 
maxima over nodes. Such an induced velocity field cannot alter the property of 
the streamline pattern, that it  has maximum displacement over crests and 
troughs; nor will this conclusion be altered after indefinite repetition of the 
argument; moreover, in such a pattern the pressure must be in perfect antiphase 
with the surface elevation, and no energy can be transferred to the waves. 

However, conditions a t  the critical layer form an exception to what has just 
been described; there, as we have seen, the vertical velocities, with maxima over 
nodes, generate local concentrations of excess vorticity with maxima over nodes. 
These can only induce a velocity field whose horizontal component has maxima 
over nodes, and whose vertical component has maxima over crests and troughs; 
this produces a redistribution of all the rest of the vorticity; this induces another 
velocity field in the same phase, which produces a further redistribution, and 
ao on; the details are complex, but the essential point is that a t  each stage of this 
process the horizontal components of velocity, and hence also the pressures, have 
maxima over nodes. In  particular, at the surface, a component of pressure 
lagging 90" behind the surface elevation results in this way from the vorticity 
displacements at the critical layer; its magnitude, however, is found far more 
easily from the arguments about momentum loss given in $3 .  

These explanations of how the long-range action of vorticity concentrated at  
the critical layer, out of phase with the main vorticity distribution, generates at 
the surface momentum transfer to the wave, do not, of course, deny that across 
every level, between the critical layer and the surface, transport of momentum 
must occur; in other words, that p G ,  the Reynolds stress formed from the 
sinusoidally varying velocities u and v (as opposed to any turbulent components 
superimposed on them) must be negative. Indeed, this Reynolds stress is the 
integral from y to 00 of the mean vortex force - pwV and must, in so far as that 
force shows a delta-function behaviour at the critical level, be zero above and 
constant below that level. Lin (1955) and others have drawn attention to this 
behaviour of puV in connexion with the theory of hydrodynamic stability, but 
have not used its derivative, the mean vortex force, which seems to help in the 
understanding of at least the present problem. 
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5. Conclusion 
Miles’s mechanism of water-wave amplification by wind, which is quantita- 

tively supported, as noted in Q 1, by the observations on directional spectra by 
Longuet-Higgins et al. (1962), can be described concisely as follows. 

Sinusoidal travelling waves on water perturb air flowing over them (in their 
direction of propagation) by undulations, in parallel with those in the water 
surface. These produce an air pressure distribution, which at any level is greatest 
over troughs and least over crests. Just above the critical level, the air is moving a 
little faster than the wave velocity, but, as it creeps forward from over a crest to 
over a trough, it is turned back by the higher pressure, moves down to below the 
critical layer and returns towards the crest. Quantitatively, the downflow ahead 
of the crest must be such as to provide a vortex force - pwv balancing the pressure 
gradient; upflow is similarly produced behind the crest. 

If, now, in the undisturbed airflow, the vorticity decreases with height, as is 
characteristic of turbulent flow, then the upflow behind the crest carries with it 
vorticity in excess of the unperturbed value characteristic of its new surroundings, 
while the downflow ahead of the crest carries a defect of vorticity. The mean 
vortex force - p G  is accordingly negative, and reduces the mean momentum at 
the critical layer, where energy and momentum are lost in the correct ratio, c, for 
transfer to the water-wave motion. The rate of this energy transfer varies as 
the square of the wave amplitude, and hence as the wave energy itself, which 
therefore grows exponentially. 

The mechanism is effective only for small y,/h. This is because the undulations 
of the airflow decay with height like exp ( - 2ny/h); hence, the pressure gradients 
a t  the critical layer, and the upflow velocities they produce, are roughly propor- 
tional to exp ( - 2ngc/h); accordingly, the momentum transfer, which depends on 
the square of the upflow velocities, is roughly proportional to exp ( - 4nyC/h), as 
noted in 6 1. We have seen that for such small yc /h  the ‘critical level’, where air 
velocity equals wave velocity, is more closely at a fixed height yc above the wavy 
water surface, than above the mean water surface, and must be thought of, 
therefore, as imitating the undulations of the surface. 

When the airflow makes a non-zero angle 8 to the direction of wave propagation, 
the same arguments apply provided that the unperturbed velocity is replaced, 
throughout, by its component in the direction of wave propagation. The critical 
layer is thus defined so that U(yJ cos 8 = c; this ensures that fluid at that level 
moves so that it can keep up with a given wave crest or trough, as in the above 
discussion. 

We may note, finally, that experiments are conceivable in which only waves in 
the direction of the wind are permitted to be present; in these, the loss of momen- 
tum only in a rather narrow band of heights might be expected to lead to a 
peculiarly shaped velocity profile. However, in the case of a natural wind, 
momentum is lost at a great variety of heights, varying with the angle 19 between 
the wind and the direction of propagation of the parts of the water-wave spectrum 
to which momentum a t  the height in question is transferred. In  this case, there- 
fore, no special peculiarities of velocity profile are to be expected. 
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